Abstract

The Parautochthonous Belt in the region of Key Harbour, Ontario, is composed of Early Proterozoic migmatitic para- and orthogneiss and Mid-Proterozoic granitoids, which were reworked during the Grenville orogeny. Grenvillian deformation is localized into anastomosing arrays of high-strain shear zones enclosing elongate bands and lozenges of rock subjected to lower and near-coaxial strain. Crosscutting relationships preserved in the low-strain domains document two pre-Grenvillian plutonic and tectonometamorphic events, which are bracketed in age by U–Pb zircon geochronology. A 1694 Ma leucogranite intrudes, and provides a minimum age for, high metamorphic grade gneisses formed during an earlier tectonometamorphic event (D1–M1). The leucogranite was intruded by mafic dykes, deformed, and metamorphosed at uppermost amphibolite facies during D2–M2, before the emplacement of Mid-Proterozoic granitoids at ca. 1450 Ma. Following the emplacement of gabbro dykes and pods at ca. 1238 Ma, the area was overprinted by granulite to uppermost amphibolite facies metamorphism (Grenvillian), for which monazites provide a minimum age of ca. 1035 Ma. Titanite U–Pb ages of 1003 – 1004 Ma record cooling through 600 °C. A regionally important swarm of east–west-trending posttectonic pegmatite dykes dated by U–Pb zircon at 990 Ma provides a minimum age for Grenvillian ductile deformation. The present data support the contention that the Parautochthonous Belt in the Key Harbour area consists in part of reworked midcontinental crust of Early to Mid-Proterozoic age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call