Abstract
Pre-formulation physicochemical properties of the component-based Chinese medicine of Qinqi Fengshi Fang were investigated to provide a research basis for the design of the dosage form for component-based Chinese medicine of Qinqi Fengshi Fang. The macroporous resin adsorption and refining technology was used to prepare the total glycosides extract of Gentianae Macrophyllae Radix, Panacis Majoris Rhizome and Corni Fructus respectively in the prescription of Qinqi Fengshi Fang. Their physicochemical properties were investigated, including solubility, wettability, hygroscopicity, equilibrium solubility, oil-water partition coefficient, and stability. The results showed that the total glycosides of Gentianae Macrophyllae Radix, Panacis Majoris Rhizome and Corni Fructus all had good solubility and wettability. The solubility index of each total glycoside component was greater than 85%, and the water absorption index was greater than 50%. In the range of pH 2.0-7.4, the equilibrium solubility of three kinds of total glycosides all increased with the increase of pH, showing a consistent change trend of solubility. The hydrophilicity was also suitable and similar. Overall, three kinds of total glycosides showed good stability, but strong hygroscopicity. The degree of hygroscopicity was as follows: total glycosides of Gen-tianae Macrophyllae Radix > total glycosides of Corni Fructus > total glycosides of Panacis Majoris Rhizome. Therefore, the hygroscopi-city needed to be considered in the preparation of the component-based Chinese medicine of Qinqi Fengshi Fang. The excipients and packaging materials can be properly selected to reduce the hygroscopicity of the preparation. This study provides a reference for the dosage form design of the component-based Chinese medicine of Qinqi Fengshi Fang.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.