Abstract

The industrial sector demands 25% of global energy as heat, where one-third is used at temperatures below 150 °C. Nevertheless, the installed solar heating capacity in the industry is only 0.02%, even though the integration of solar heating systems into production processes could significantly reduce fossil fuel consumption at a competitive cost. Among other reasons, this low penetration is due to the final users’ lack of knowledge of solar heating technologies. As a result, a free pre-feasibility assessment tool was developed for non-specialised users to evaluate the possibility of integrating solar heat into their processes using basic information. This tool uses transient simulation to estimate a feasible solar heating system through the parametric optimisation of the solar collection area, thermal storage volume, heat exchange capacity, and solar integration schemes at the supply level and costs. A commercial facility in Mexico was analysed using the developed tool as a case study. However, even when this is not a design tool, the calculated solar collector area, storage tank volume, and investment were only 2.1%, 9.0%, and 2.3% higher than reported by the solar designer. Pre-feasibility assessment tools are essential to overcome the certainty gap between end users and solar designers, thus enhancing the possibility of implementing solar heating systems in various commercial and industrial processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call