Abstract

It has been suggested that new beta cells can arise from specific populations of adult pancreatic progenitors or facultative stem cells. However, their existence remains controversial, and the conditions under which they would contribute to new beta-cell formation are not clear. Here, we use a suite of mouse models enabling dual-recombinase-mediated genetic tracing to simultaneously fate map insulin-positive and insulin-negative cells in the adult pancreas. We find that the insulin-negative cells, of both endocrine and exocrine origin, do not generate new beta cells in the adult pancreas during homeostasis, pregnancy or injury, including partial pancreatectomy, pancreatic duct ligation or beta-cell ablation with streptozotocin. However, non-beta cells can give rise to insulin-positive cells after extreme genetic ablation of beta cells, consistent with transdifferentiation. Together, our data indicate that pancreatic endocrine and exocrine progenitor cells do not contribute to new beta-cell formation in the adult mouse pancreas under physiological conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call