Abstract

This study investigated the effects of pre-exercise branched-chain amino acid (BCAA) administration on blood ammonia levels and on time to exhaustion during treadmill exercise in rats. Adult female Wistar rats were trained on a motor driven treadmill. After a 24-h fast, rats were injected intraperitoneally (i.p.) with 1 mL of placebo or BCAA (30 mg), 5 min before performing 30 min of submaximal exercise (N = 18) or running to exhaustion (N = 12). In both cases, rats were sacrificed immediately following exercise, and blood was collected for the measurement of glucose, nonesterified fatty acid (NEFA), lactic acid, BCAA, ammonia, and free-tryptophan (free-TRP) levels. Control values were obtained from sedentary rats that were subjected to identical treatments and procedures (N = 30). Plasma BCAA levels increased threefold within 5 min after BCAA administration. Mean run time to exhaustion was significantly longer (P < 0.01) after BCAA administration (99 +/- 9 min) compared with placebo (76 +/- 4 min). During exercise, blood ammonia levels were significantly higher (P < 0.01) in the BCAA treated compared with those in the placebo treated rats both in the 30-min exercise bout (113 +/- 25 mumol.L-1 (BCAA) vs 89 +/- 16 mumol.L-1) and following exercise to exhaustion (186 +/- 44 mumol.L-1 (BCAA) vs 123 +/- 19 mumol.L-1). These data demonstrate that BCAA administration in rats results in enhanced endurance performance and an increase in blood ammonia during exercise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.