Abstract

Amphibole phenocrysts in post-1 ka lava domes deposits of Taranaki volcano, an andesite arc volcano in New Zealand, provide an opportunity to explore late-stage changes in melt composition and volatiles in the run up to eruption. Amphibole is a subordinate phase (0–7% of modal phenocrysts) and the phenocrysts display three types of growth history. Type 1 are large compositionally and texturally uniform phenocrysts that have low MgO (<13 wt%) and high K2O (∼1–1.4 wt%) contents. In contrast, Type 2 have similar cores but have been partially resorbed and overgrown by a mafic rim distinguished by high MgO (up to 15 wt%) and low K2O (<1.0 wt%) contents. Type 3 are the least common, and have either normal zoned or concentrically zoned interiors with respect to MgO and FeO. Overall, elemental substitutions and zonation patterns are related to periods of resorption and regrowth that are best explained by changes in melt composition. Based on calculated equilibrium melt compositions, the amphibole crystallisation is consistent with an incrementally grown andesitic to dacitic (SiO2 58–67 wt%) crystal mush that was periodically recharged with more mafic magma (SiO2 ∼ 55 wt%). The melts span a compositional gap (SiO2 ∼ 60–65 wt%) that is not represented in eruption products from the last 8 ka. Such melts were likely brief stages during ongoing fractional crystallisation and magma mixing. Each recharge event disrupted an evolving system and mixed crystals from different parts of it. This concept supports triggering of eruptions by recharge of mafic melts, as also inferred from plagioclase zonation for some eruptions from Taranaki. The outermost rims (0–5 μm) of many amphibole phenocrysts are enriched in fluorine (up to 1.9 wt%) and surrounded by a thick opacitic decomposition growths. We interpret this as the result of slow magmatic ascent and extensive crystallisation that produced a late-stage halogen-rich interstitial melt. This likely extended the conditions for amphibole stability to lower pressure. If F enrichment was accompanied by comparable enrichments in other halogens that preferentially partition into an aqueous phase, then extensive degassing would have occurred during the dome extrusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.