Abstract

Herein, we proposed dry heat treatment (DHT) as a pre-treatment method for modifying printed materials, with a particular focus on its application in the control of starch-lipid interactions during hot-extrusion 3D printing (HE-3DP). The results showed that pre-DHT could promote the complexation of wheat starch (WS) and oleic acid (OA)/corn oil (CO) during HE-3DP and thus increase the resistant starch (RS) content. From the structural perspectives, pre-DHT could break starch molecular chains into lower relative molecular weight which enhanced the starch-lipids hydrophobic interactions to form the V-type crystalline structure during HE-3DP. Notably, pre-DHT could also induce the formation of complexed structure which was maintained during HE-3DP. Compared with CO, OA with linear hydrophobic chains was easier to enter the spiral cavity of starch to form more ordered structures, resulting in higher RS content of 27.48 %. Overall, the results could provide basic data for designing nutritional starchy food systems by HE-3DP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call