Abstract

The isotopes of thorium (Th) and neodymium (Nd) are used as tracers in oceanography, and are key parameters in the international GEOTRACES program. The very low concentrations of Th and Nd as well as the reactive nature of Th isotopes makes the analysis of seawater samples a complex process. Analysis requires time-consuming pre-concentration from over 5 L of seawater. We describe a method to simultaneously pre-concentrate dissolved Th and Nd from acidified seawater samples using the Nobias® PA1L chelating resin. Prior to pre-concentration, hydrofluoric acid is added to the sample to stabilise Th, ammonium acetate buffer added (0.05 M), pH adjusted to 4.75, and then finally the prepared sample is pumped through the Nobias resin at a rate of 15 ml min−1. Up to 6 samples can be processed simultaneously. Following elution in 3 M HNO3, both elements are chromatographically separated and determined using Inductively Coupled Plasma Mass Spectrometry. Oxidation of the sample between all column separation steps, including after the initial Nobias resin, is important for obtaining maximum elemental recoveries. The method has >90% recovery with blank levels typically <10 pg for 232Th and <70 pg for Nd. Accuracy is excellent, as our reported values generally agree within 1% of the GEOTRACES intercalibration standards. The long-term analysis of these materials also indicates excellent reproducibility. The pre-concentration of Th and Nd using the Nobias resin is a time saving option compared to the widely used iron co-precipitation technique. Sample handling is also reduced, decreasing the risk of sample contamination. The simplicity of our suggested pre-concentration procedure makes it possible to be applied at sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call