Abstract

In-line coagulation-ultrafiltration is reliable to achieve the safe disposal of algae-laden water with alleviated membrane fouling. Poly(diallyl dimethyl ammonium chloride) (PDADMAC)-composited titanium xerogel (TXC) coagulant (abbreviated as P-T) was reported to possess better resistance to organic matter loads, and its mitigation effect on subsequent ultrafiltration efficiency towards algae-related pollutants was investigated in this study. Results showed that P-T coagulation effectively mitigated membrane fouling over pH 5.0–9.0, whereas TXC only worked better under acidic condition. Acidic environment facilitated algae and organic matter removal by pre-coagulation, thus greatly improving ultrafiltration efficiency. Under neutral and alkaline conditions, PDADMAC portion in P-T enhanced the coagulation removal towards algae and protein constituents, and simultaneously promoted the formation of flocs with unique porous structure, which jointly contributed to its high-efficient alleviation ability. Nevertheless, PDADMAC increased adhesion force between P-T coagulated flocs and membrane surface, thus slightly reducing the recovery rate of membrane flux at pH 5.0. Pearson correlation analyses implied that removing algae cells would prevent reversible fouling-induced flux decline, whereas eliminating organic matter could greatly promote ultrafiltration efficiency via mitigating irreversible fouling. Therefore, elevating removal efficiency of organic matters is still the major objective for ultrafiltration pretreatment technologies and the optimization direction towards TXC-based coagulants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call