Abstract

234 Background: The PI3K/Akt pathway is frequently activated in aggressive and resistant prostate cancer. Here we detail our pre-clinical evaluation of AZD8186, a novel β and δ selective PI3K small molecule inhibitor. Further, we investigate how increased transcription of the myc oncogene may represent a mechanism of resistance to monotherapy PI3K/Akt inhibition. Therefore, we further evaluated co-targeting strategies against both the PI3K/Akt pathway and the epigenetic reader protein BRD4. Methods: Human prostate cancer cell lines LNCaP and 22RV1 were tested for sensitivity to AZD8186 in vitro. Caspase-3 activity and flow cytometry were used to assess apoptosis. Western blotting and RT-qPCR were used to measure AR and myc pathway genes and protein expression. Castrate resistant LNCaP xenografts were treated with 10mg/kg and 25mg/kg doses of AZD8186 given orally 4 days on, 3 off. Results: In vitro results demonstrated sensitivity to AZD8186 with decreases in cell proliferation and increases in apoptosis. In vivo results demonstrated a dose-dependent decrease in tumor growth velocity with AZD8186 with on-target decreases in pAkt was observed in xenograft tumour samples. Further, increases in myc protein and mRNA levels were seen in xenograft samples treated with AZD8186 compared to control. Downstream increases in EGFR and IGF-IR mRNA transcripts induced by AZD8186 were also seen in vitro and in vivo. Increases in myc, EGFR and IGF-IR was also seen in cells and tumours treated with an Akt inhibitor. Addition of the BDR4 inhibitor JQ1 decreased the increase of myc induced by AZD8186 and also partially abrogated the increases in EGFR, IGFR. Greater suppression of PSA expression was seen with the combination of AZD8186 and JQ1 compared to AZD8186 and enzalutamide. Similar results were seen in the 22RV1 cell line. Conclusions: Inhibition of PI3K with AZD8186 inhibits growth of PTEN-negative LNCaP cells. However, feedback activation of myc and AR pathways occurs. We demonstrate BRD4 inhibition using JQ1 which co-targets both myc and AR feedback pathways as a rationale combination strategy with PI3K inhibition. This strategy warrants further investigation in prostate cancers with an activated PI3K/Akt pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.