Abstract
Seasonally breeding species exhibit cyclical changes in circulating steroid hormone profiles that correspond with changes to their reproductive behavior and ecology. Such information is critical to the conservation of imperiled and data-deficient species, such as the eastern hellbender salamander (Cryptobranchus alleganiensis alleganiensis). We determined changes in plasma testosterone (T), dihydrotestosterone (DHT), 11-ketotestosterone (11-KT), 11-ketoandrostenedione (11-KA), dehydroepiandrosterone (DHEA), cortisol, corticosterone, and progesterone (P4) during a four-month period preceding breeding in adult male and female eastern hellbenders. This pre-breeding period is characterized by increased diel movement and aggression by both sexes, follicular development and yolk production in females, and sperm production, territoriality, and nest site establishment in males. In both males and females, we observed a progressive increase in circulating T and DHT during the pre-reproductive season, both peaking in August (17 days before breeding), but concentrations of both hormones were higher in males. Conversely, 11-KT was higher in females, but did not vary significantly by date. These results suggest that T and DHT are the predominant androgens in eastern hellbenders and are likely important regulators of reproductive processes in both males and females. The detection of significant quantities of DHT and 11-KT in females is particularly interesting, considering that unlike T, neither of these androgens can be converted to estrogens. Therefore, it seems possible that aggression or some aspect of reproduction in the female eastern hellbender may be directly mediated by androgen signaling. Baseline cortisol did not vary throughout the pre-breeding period but was higher in females than males, and also became highly variable in females leading up to breeding. Progesterone, 11-KA, DHEA, and corticosterone were rarely or never detected, and thus, do not appear to be important during the pre-reproductive season. This study provides a physiological framework for future studies of hellbender reproductive biology, which could ultimately be important for their conservation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.