Abstract

FMRFamide evokes long-term inhibition of the sensorimotor connection of Aplysia that includes structural alterations in the presynaptic sensory cell. FMRFamide also evokes a down-regulation of the adhesion molecule apCAM from the surface of the postsynaptic motor cell L7. We examined the second messenger pathways mediating the long-term actions of FMRFamide on both the pre- and postsynaptic cells and determined whether the activation of each pathway is required for the expression of long-term functional and structural plasticity. Inhibition of the lipoxygenase pathway of arachidonic acid metabolism, but not the cyclooxygenase pathway, blocks the long-term changes in the presynaptic sensory cell evoked by FMRFamide. The down-regulation of apCAM in L7 appears to be mediated by cAMP-dependent activation of protein kinase A. Blocking the cAMP-dependent changes also blocks FMRFamide-induced long-term functional and structural changes. These results suggest that the expression of long-term heterosynaptic inhibition in Aplysia may require concomitant presynaptic and postsynaptic changes, each transduced by specific second messenger systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call