Abstract

The effects of the dihydropyridine (DHP) Ca2+ channel antagonist, nifedipine, were studied on the cholinergic synapse between the presynaptic neurones B4/B5 and the postsynaptic neurones B3/B6 located in the buccal ganglion of Aplysia californica. Nifedipine (10 microM) decreased the presynaptic Ca2+ current by 30%-40%. Blockade of DHP-sensitive Ca2+ channels, however, did not affect quantal transmitter release from the presynaptic neurones. Thus, at this synapse, DHP-sensitive Ca2+ channels appear not to be involved in acetylcholine (ACh) release. The postsynaptic response to an ionophoretic application of ACh was decreased by nifedipine, pointing to a blocking action of the drug on the postsynaptic receptor/channel complex. Nifedipine was also found to activate protein kinase C, which in turn induces an increase in the nifedipine-resistant presynaptic Ca2+ influx and in the number of released ACh quanta. These effects of nifedipine could be prevented by a previous application of 1,5-(isoquinolinylsulfonyl)-2-methyl-piperazine (H-7), a protein kinase blocker.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.