Abstract

ObjectiveThe effect of vagus nerve stimulation (VNS), an important auxiliary therapy for treating drug-resistant epilepsy (DRE), on autonomic nerve function is still controversial. Heart rate variability is a widely used indicator of autonomic nerve function. To clarify the relationship between VNS and heart rate variability (HRV), we performed a meta-analysis to systematically evaluate the effect of VNS on HRV in patients with epilepsy. MethodsWe performed a systematic review by searching the following online databases: PubMed, Web of Science, EMBASE and the Cochrane Library. The key search terms were “vagal nerve stimulation,” “epilepsy” and “heart rate variability”. Other features of VNS in patients with epilepsy include postoperative changes in low-frequency (LF), high-frequency (HF) and low-frequency/high-frequency (LF/HF) heart rate variability, which were used as evaluation indices, and the Newcastle-Ottawa Quality Assessment Scale and Stata 14.0 statistical software were used for literature quality evaluation and meta-analysis. ResultsTwelve studies published in English were obtained, and 229 patients with epilepsy who underwent VNS were ultimately included after elimination of duplicate articles and those that did not meet the inclusion criteria. Regarding LF heart rate variability, in the response subgroup, patients with DRE with VNS presented a lower value (-0.58) before surgery than after surgery, with a 95% confidence interval (CI) ranging from −1.00 to −0.15. For HF heart rate variability, patients with DRE with VNS had a lower value (-0.45) before surgery than after surgery in the response subgroup, with a 95% CI ranging from −0.74 to −0.17. No differences were found for LF/HF values or the LF and HF values of other subgroups. ConclusionVNS has little effect on the balance of sympathetic and parasympathetic nerve activity and would not be expected to cause cardiovascular autonomic dysfunction in patients with DRE. For patients with DRE, VNS can control seizures and has little effect on autonomic nervous function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.