Abstract

Adventitious rooting is a complex developmental response affected by genetic and environmental factors. Radiation quality effects on adventitious rooting depend on characteristics such as species, growth stage, irradiance, spectral quality, and time of exposure. Eucalyptus is an essential genus for the paper industry, and high yield plantations depend on adventitious rooting of selected genotypes. This work addressed two hypotheses: (1) radiation quality equally affects adventitious rooting in Eucalyptus species of different recalcitrance; (2) adventitious rooting outcome depends on both donor plant and cutting radiation quality treatments. To that end, the easy-to-root Eucalyptus grandis and the recalcitrant Eucalyptus globulus were evaluated. The effect of white, blue, red and far-red radiation enrichment on microcuttings and donor plants of both species was evaluated in relation to rooting. There was no effect of radiation quality on adventitious rooting of E. grandis or when radiation treatments were applied to E. globulus microcuttings. In contrast, donor plants of E. globulus, grown in medium devoid of sucrose and exposed to far-red radiation, yielded microcuttings showing higher rooting percentage, even in the absence of exogenous auxin in the rooting medium. Sucrose in donor plant medium abolished the positive effect of far-red radiation. An increase in endogenous soluble sugars and starch contents in basal microcuttings was associated with far-red radiation treatment of donor plants. These results underline the importance of appropriate carbohydrate partitioning in donor plants for adventitious rooting of cuttings and provide a basis for understanding and overcoming rooting recalcitrance in E. globulus clones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call