Abstract
SR 4233 (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a bioreductive agent which exhibits highly selective killing of hypoxic cells in a variety of mammalian cell lines in vitro and in murine tumors in vivo. The selective toxicity of the drug results from its one-electron reduction under hypoxic conditions to form a free radical intermediate capable of damaging DNA, through the formation of strand breaks. Using the neutral filter elution assay, SR 4233 was found to be more efficient at producing DNA double strand breaks in Chinese hamster ovary (CHO) cells than an equitoxic dose of γ-rays. Drug and radiation sequencing experiments were also performed, with both cell survival and DNA strand break rejoining used as endpoints. As a result of these studies, we now describe two additional properties of SR .4233: (a) radiosensitization of aerobic cells in culture produced by hypoxic incubation with drug either before or after irradiation, and (b) the inhibition of subsequent rejoining of radiation-induced DNA double strand breaks after hypoxic pretreatment with drug. The magnitude of the radiosensitization produced did not vary for drug treatments which, when given alone, reduced cell survival over a range from 30% to 2%. The extent of DNA repair inhibition increased with increasing severity of the SR 4233 pretreatment, but was quite small for non-lethal drug exposures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Radiation Oncology, Biology, Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.