Abstract

Fine-needle aspiration cytology (FNAC) represents a valid alternative to biopsy in a variety of clinical settings mainly based on its simplicity and less invasive clinical approach. In some cases, morphology evaluation alone is not sufficient to manage the patients, so that the application of ancillary techniques can contribute to diagnosis, prognosis and prediction of tumor behavior. These techniques include polymerase chain reaction (PCR), fluorescence in situ hybridization (FISH), in situ PCR, direct Sequencing, microarrays and proteomic methodologies. Although several recent experiences underline the superior value of deoxyribonucleic acid (DNA) quality mainly for advanced genomic high throughput platforms, very scant literature studied the role of the pre-analytical or analytical phases. Despite the high specificity of molecular techniques as a support for diagnosis, there is a need for an increased standardization of pre-analytical/analytical steps such as providing appropriate clinical history, proper collection of laboratory specimens and proper preparation of samples, adequate fixative/reagent concentrations and technical equipments. All these requirements are crucial according to the results from 42 American laboratories, which reported 0.33% of significant molecular errors with 60% of them in the pre-analytical phase. The most common error is to forget that cytological preparation requires specific molecular variables, which are different from histological specimens. Cytological samples offer the advantage of a well preserved DNA, readily extractable and reasonably stable (from 6 months to 5 years) avoiding pitfalls due to formalin-fixation. Freshly prepared, unstained direct, alcohol-fixed papanicolaou, air-dried diff-quick smears are all suitable for DNA extraction and preservation. In the specific field of thyroid FNAC, molecular analysis has been supported by the growing evidence that papillary thyroid carcinoma (PTC), the most common thyroid cancer, frequently is a diploid lesion and can display non-overlapping mutations of the v-Raf murine sarcoma viral oncogene homolog B1 (BRAF) in 46% to 70%, cases, ret proto-oncogene (RET) in 3 to 85% and Rat Sarcoma oncogene (RAS) in 0-21% cases. Recently, several cytological papers demonstrated that the combination of morphology and molecular analysis can increase the diagnostic accuracy allowing more precise prediction of malignancy regardless of the diagnostic categories. In conclusion, the correct use of the pre-analytical-analytical steps might lead to optimal results on cytology and empower the prognostic value of molecular techniques as strong indicators of cancer for their high specificity and positive predictive value.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call