Abstract

The catalytic performance of ethanol steam reforming (ESR) reaction was investigated on a praseodymium (Pr) dopant to modify Ce0.5Co0.5O2 catalyst. The Ce0.5Co0.5O2 catalyst was prepared by co-precipitation-oxidation method with NaOH precipitant and H2O2 oxidant. Doped 5 and 10 wt% Pr (Pr5-Ce-Co and Pr10-Ce-Co) catalysts were prepared by an incipient wetness impregnation method and reduced at 250 and 400 °C (H250 and H400). All samples were characterized by using XRD, TPR, BET, EA, TG and TEM techniques at various stages of the catalyst. The results indicated that the doped Pr improved the activity and products distribution, and depressed the deposited carbon. The Pr10-Ce-Co-H400 sample was a highly active and stable among these catalysts, where the hydrogen distribution approached 72% at 475 °C and only minor C1 (CO and CH4) species were detected. In addition, the ethanol conversion still remained complete, and the selectivity of hydrogen exceeded 70% during a 100 h time-on-stream test at 400 °C. The high oxygen storage capacity (OSC) and high accessible oxygen for this catalyst allowed oxidation/gasification of deposited carbon as soon as it formed, and less coke was detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call