Abstract

When excessive praseodymium and dysprosium ions are doped with M-type strontium ferrite, heterophases with different magnetic and electrical properties will be formed. We use this to intentionally induce different heterogeneous growth in the Pr–Dy co-doped strontium ferrite system. While maintaining the dielectric loss of the main phase, the produced heterogeneous phase acts as a companion for dielectric and magnetic losses. The synthesized SrFe12-2xPrxDyxO19 ferrite demonstrates its potential as a microwave absorbing material, exhibiting excellent absorption effects over a wide range of Pr–Dy doping (x = 0.05–1.5). The XRD results show that the synthesized materials include both pure M-phase and coexistence of M-phase and heterophases, and the generated heterophases are mainly perovskite type ferrite and garnet type ferrite. SEM and EDS results indicate that Pr–Dy co-doping can significantly refine the grain size, reduce the grain size of the main and heterophases, and lead to a decrease in oxygen content. The XPS analysis shows that some praseodymium ions are in the Pr4+ oxidation state, leading to the existence of Fe2+ ions and oxygen defects (Od). The VSM results indicate that at different calcination temperatures, the saturation magnetization decreases and the coercivity shows an increasing trend as the Pr–Dy doping amount increases. Pr–Dy doping not only increases the dielectric and magnetic losses of the M phase, but also generates heterophases that can enhance the dielectric and magnetic losses of the material, jointly improving the absorption effect. This results in excellent absorption performance of the material within a large range of praseodymium dysprosium doping contents (x = 0.05–1.5, RLmin = −52.51 dB, EABmax = 4.81 GHz).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.