Abstract

Despite its limitations, Prandtl’s mixing length model is widely applied in modelling turbulent free shear flows. Prandtl’s extended model addresses many of the shortfalls of the original model, but is not so widely used, in part due to additional mathematical complexities that arise in its derivation and implementation. Furthermore, in both models, Prandtl neglects the kinematic viscosity on the basis that it is much smaller in magnitude than the turbulent viscosity. Recent work has shown that including the kinematic viscosity in the original model has both mathematical and physical advantages. In the present work, a novel derivation of the extended model is provided, and it is demonstrated that similar advantages are again obtained when the kinematic viscosity is included. Additionally, through the use of scaling techniques, similarity mean velocity profiles of the extended model are derived, resulting in a single nonlinear ordinary differential equation that is solved numerically with a Hermite spectral method. The computed profiles for the normalized similarity mean velocity and shear stress are compared with experimental observations and shown to be in excellent agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call