Abstract

Objective: To study the effect of pralnacasan, the orally bioavailable pro-drug of a potent, non-peptide inhibitor of interleukin-1β converting enzyme (ICE), RU 36384/VRT-18858, on joint damage in two mouse models of knee osteoarthritis (OA). Design: In a collagenase-induced OA model, pralnacasan was given orally by gavage to female Balb/c mice at 0, 12.5, 25 and 50 mg/kg twice a day. In the second study, pralnacasan was tested in male STR/1N mice, which develop OA spontaneously, by administering food–drug mixtures ad libitum at concentrations of 0, 700 and 4200 ppm (mg/kg food). OA joint damage was assessed by a semi-quantitative histopathological score in both studies. In the STR/1N mouse study, urinary levels of collagen cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) were determined by high-pressure liquid chromatography at baseline, after 3 and 6 weeks of treatment and RU 36384/VRT-18858 plasma concentrations was measured after 6 weeks. Results: In both studies, the mice developed moderate to severe knee joint OA in the medial joint compartments (tibial plateau and femoral condyle), the non-treated control groups showing median histopathological scores from 18 to 21 of a maximal score of 32. Pralnacasan was well tolerated. At the doses of 12.5 and 50 mg/kg in collagenase-induced OA and at the high dose of 4200 ppm in STR/1N mice pralnacasan treatment significantly reduced OA by 13–22%. In the STR/1N mice, urinary levels of HP cross-links and the ratio of HP/LP, which are indicators of joint damage in OA, were significantly reduced in the high dose group by 59 and 84%, respectively. Conclusions: The ICE inhibitor pralnacasan reduced joint damage in two experimental models of OA and has the potential to become a disease-modifying drug for the treatment of OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.