Abstract

It is now been over 15 years since Hybrid Photon Counting Detectors (HPCD) became one of the standard position-sensitive detectors for synchrotron light sources and X-ray detection applications. This is mainly due to their single-photon sensitivity over a high dynamic energy range and electronic noise suppression thanks to energy thresholding. To reach those performances, all HPCD pixels must feature the same electrical response against photons of the same energy. From the analysis of a monochromatic beam, in case of an ideal HPCD detector, it would be sufficient to apply a fixed voltage threshold among all pixels, positioned at half of the mean pulse amplitude to count every photon above the threshold. However, in practical cases, it must be considered that noise baselines from all pixels are not always strictly located at the same voltage level but can be spread over some voltage ranges. To address this kind of issue, most of all HPCDs apply a conventional threshold equalization method, that mainly relies on three steps; the setting of a global threshold at an arbitrary value, the identification of pixels noise baseline around that global threshold through an in-pixel threshold trimmer, and the computation of the required threshold offsets for setting all pixels at their own noise baseline at the same time. However, in case of a first-time use of an HPCD prototype, the threshold equalization might be biased by parameters that are wrongly set. Those biases can sometimes be characterized by the inability to localize some pixel noise baselines, which could be outside the voltage range of the threshold trimmer. The recovery of those biased pixels could be performed by changing the position of the global threshold, or by increasing the voltage range of the threshold trimmer. Unfortunately, both solutions could be time consuming due to the lack of information on the required steps for recovering all noise baselines. In order to overcome this issue in a reasonable time, this work introduces a pragmatic method that can be applied to HPCDs for an early and effective identification of appropriate pixels’ parameters, avoiding the need to test a high number of pixels configurations. The application of this method, at the early stage of the HPCD calibration, may drastically reduce the investigation time for finding the optimal operating parameters of HPCD prototypes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call