Abstract

BackgroundRegular handrim wheelchair (RHW) propulsion is straining for the upper extremities and wheelchair users often experience overuse problems. A recent advancement in wheelchair technology that could assist users is the pushrim-activated power-assisted wheelchair (PAPAW). PAPAWs are challenging to control, yet it is unclear how people learn to use a PAPAW. The purpose of this study is to examine early skill acquisition through practice in PAPAWs and compare it with RHWs.MethodsTwenty-four able-bodied novices were randomly allocated to either the RHW group or the PAPAW group. The experiment consisted of five sessions with three blocks of 4 min steady-state practice at 1.11 m/s and 0.21 W/kg. Finally, a transfer to the other mode was made. Data were collected with a drag-test, breath-by-breath spirometry, and a motion capture system. The last minute of each four-minute block was used for analysis. A mixed analysis of variance (ANOVA) was used to test for group, time, and interaction effects.ResultsBoth groups improved their (assisted) mechanical efficiency, reduced their stroke rate, right-left and forward-backward deviation on the treadmill, and had a lower rate of perceived exertion (RPE) over time. (Assisted) mechanical efficiency was higher for the PAPAW group than for the RHW group and RPE was lower. However, left-right and forward-backward deviation was also found to be higher in the PAPAW group.ConclusionsAt the group level the energetic cost of RHW and PAPAW propulsion can be lowered through low-intensity practice in novice users. The PAPAW is more ‘efficient’ than the RHW given the reduced energy requirement of the user from the motor assist, but more difficult to control. Future studies on PAPAWs should focus on the control needs of the user and their interaction with the power-assist technology.

Highlights

  • Regular handrim wheelchair (RHW) propulsion is straining for the upper extremities and wheelchair users often experience overuse problems

  • The aim of the current study is to explore the initial skill acquisition through low-intensity practice of able-bodied participants in pushrim-activated power-assisted wheelchair (PAPAW) and compare them to able-bodied participants that performed the same protocol with RHWs

  • All participants completed the protocol at a mean external power output of 17 W, though some safety stops were necessary to ensure their safety in the initial bouts, this predominantly happened in the PAPAW group during T1 in the first minute

Read more

Summary

Introduction

Regular handrim wheelchair (RHW) propulsion is straining for the upper extremities and wheelchair users often experience overuse problems. Alternatives to RHWs have been developed in the past for those with shoulder pain, limited arm function, or upper body capacity. One such alternative is the fully-powered wheelchair [6]. De Klerk et al Journal of NeuroEngineering and Rehabilitation (2018) 15:56 various other substitutes to handrim and fully-powered wheelchairs have been proposed such as crank and lever propelled wheelchairs. Whereas these systems prove to be less physically straining, there are several practical limitations that prevent regular use [9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call