Abstract
Machine learning techniques are a standard approach in spam detection. Their quality depends on the quality of the learning set, and when the set is out of date, the quality of classification falls rapidly. The most popular public web spam dataset that can be used to train a spam detector—WEBSPAM-UK2007—is over ten years old. Therefore, there is a place for a lifelong machine learning system that can replace the detectors based on a static learning set. In this paper, we propose a novel web spam recognition system. The system automatically rebuilds the learning set to avoid classification based on outdated data. Using a built-in automatic selection of the active classifier the system very quickly attains productive accuracy despite a limited learning set. Moreover, the system automatically rebuilds the learning set using external data from spam traps and popular web services. A test on real data from Quora, Reddit, and Stack Overflow proved the high recognition quality. Both the obtained average accuracy and the F-measure were 0.98 and 0.96 for semiautomatic and full–automatic mode, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.