Abstract

Generalized cross-validation (GCV) is a popular parameter selection criterion for spline smoothing of noisy data, but it sometimes yields a severely undersmoothed estimate, especially if the sample size is small. Robust GCV (RGCV) and modified GCV are stable extensions of GCV, with the degree of stabilization depending on a parameter \(\gamma \in (0,1)\) for RGCV and on a parameter \(\rho >1\) for modified GCV. While there are favorable asymptotic results about the performance of RGCV and modified GCV, little is known for finite samples. In a large simulation study with cubic splines, we investigate the behavior of the optimal values of \(\gamma \) and \(\rho \), and identify simple practical rules to choose them that are close to optimal. With these rules, both RGCV and modified GCV perform significantly better than GCV. The performance is defined in terms of the Sobolev error, which is shown by example to be more consistent with a visual assessment of the fit than the prediction error (average squared error). The results are consistent with known asymptotic results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.