Abstract

AbstractHurricane Patricia (2015) was a record-breaking tropical cyclone that was difficult to forecast in real time by both operational numerical weather prediction models and operational forecasters. The current study examines the potential for improving intensity prediction for extreme cases like Hurricane Patricia. We find that Patricia’s intensity predictability is potentially limited by both initial conditions, related to the data assimilation, and model errors. First, convection-permitting assimilation of airborne Doppler radar radial velocity observations with an ensemble Kalman filter (EnKF) demonstrates notable intensity forecast improvements over assimilation of conventional observations alone. Second, decreasing the model horizontal grid spacing to 1 km and reducing the surface drag coefficient at high wind speed in the parameterization of the sea surface–atmosphere exchanges is also shown to notably improve intensity forecasts. The practical predictability of Patricia, its peak intensity, rapid intensification, and the underlying dynamics are further investigated through a high-resolution 60-member ensemble initialized with realistic initial condition uncertainties represented by the EnKF posterior analysis perturbations. Most of the ensemble members are able to predict the peak intensity of Patricia, but with greater uncertainty in the timing and rate of intensification; some members fail to reach the ultimate peak intensity before making landfall. Ensemble sensitivity analysis shows that initial differences in the region beyond the radius of maximum wind contributes the most to the differences between ensemble members in Patricia’s intensification. Ensemble members with stronger initial primary and secondary circulations beyond the radius of maximum wind intensify earlier, are able to maintain the intensification process for longer, and thus reach a greater and earlier peak intensity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.