Abstract
Because the majority of information in the industrial Internet of things (IIoT) is transmitted over an open and insecure channel, it is indispensable to design practical and secure authentication and key agreement protocols. Considering the weak computational power of sensors, many scholars have designed lightweight authentication protocols that achieve limited security properties. Moreover, these existing protocols are mostly implemented in a single-gateway scenario, whereas the multigateway scenario is not considered. To deal with these problems, this paper presents a novel three-factor authentication and key agreement protocol based on elliptic curve cryptography for IIoT environments. Based on the elliptic curve Diffie–Hellman problem, we present a protocol achieving desirable forward and backward secrecy. The proposed protocol applies to single-gateway and is also extended to multigateway simultaneously. A formal security analysis is described to prove the security of the proposed scheme. Finally, the comparison results demonstrate that our protocol provides more security attributes at a relatively lower computational cost.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.