Abstract

This experiment was performed to develop and validate practical techniques for simultaneous evaluation of the integrity of plasma and acrosomal membranes, as well as mitochondrial function in bovine spermatozoa using associations of fluorescent probes. Four protocols of fluorescent probes association were defined: protocol 1: propidium iodide (PI), fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (FITC-PSA) and rhodamine 123; protocol 2: PI, FITC-PSA and MitoTracker Green FM (MITO); protocol 3: PI, Hoechst 33342 (H342), FITC-PSA and CMXRos; and protocol 4: PI, H342, FITC-PSA and JC-1. Three ejaculates from each of the four bulls (n = 12) were utilized, showing sperm motility >/=80% and abnormal morphology </=10%. The semen was diluted in Modified Tyrode's medium (TALP) (25 x 10(6) spermatozoa/ml) and split into two aliquots, one sample was flash-frozen in liquid nitrogen and thawed. Samples for three treatments were prepared with the following ratio of fresh semen : flash-frozen semen: 100 : 0, 50 : 50 and 0 : 100. Samples were stained in all four protocols and evaluated by epifluorescence microscopy. Protocol 1 did not result in a satisfactory stain, so it could not be validated. Protocols 2, 3 and 4 were validated and showed high determination coefficient to plasma membrane integrity (R(2) = 0.95, 0.93 and 0.92, respectively), acrosome integrity (R(2) = 0.95, 0.92 and 0.91, respectively) and mitochondrial function (R(2) = 0.84, 0.93 and R(2) = 0.93, respectively). These techniques are efficient for the simultaneous integrity evaluation of plasma and acrosomal membranes and mitochondrial function in bovine spermatozoa. However, JC-1 has an advantage over MITO and CMXRos, as it separates two cell populations with high and low mitochondrial membrane potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call