Abstract

An incremental differential proportional integral (iDPI) control law using eigenstructure assignment gain design is tested in flight on a subscale platform to validate its suitability for fixed-wing flight control. A kinematic relation for the aerodynamic side-slip angle rate is developed to apply a pseudo full state feedback. In order to perform the gain design and assessment, a plant model is estimated using flight test data from gyro, accelerometer, airspeed and surface deflection measurements during sine-sweep excitations. Transfer function models for the actuators and surface deflections are identified both in-flight and on the ground for several different actuators and control surfaces using hall sensor surface deflection measurements. The analysis reveals a large variation in bandwidth between the different types of servo motors. Flight test results are presented which demonstrates that the plant model estimates based on tests with good frequency excitation, high bandwidth actuators and surface deflection measurements can be used to reasonably predict the closed-loop dynamic behavior of the aircraft. The closed-loop flight test results of the iDPi control law show good performance and lays the groundwork for further development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call