Abstract
Practical synchronization between two [Formula: see text]-dimensional nonautonomous chaotic systems is achieved by the method of event-triggered control in the case of parameter mismatch. This study focuses on parameter mismatch and its effect on synchronization performance. The synchronization criterion is deduced in the form of linear matrix inequality. The synchronization error bound is analytically estimated, which can reveal the relationships between the synchronization error and the parameters. It is proven that there exists a lower bound for the inter-event times between two event-triggered moments, which means no Zeno behavior will occur in this control scheme. The obtained results are applied to a gyrostat system. Subsequently, numerical simulations demonstrate the effectiveness of the control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.