Abstract
Given the importance of amines in a large number of biologically active natural products, active pharmaceutical ingredients, agrochemicals, and functional materials, the development of efficient C-N bond-forming methods with wide substrate scope continues to be at the frontier of research in synthetic organic chemistry. Here, we present a general and fundamentally new synthetic approach for the direct, transition-metal-free preparation of symmetrical and unsymmetrical diaryl-, arylalkyl-, and dialkylamines that relies on the facile single or double addition of readily available C-nucleophiles to the nitrogen atom of bench-stable electrophilic aminating agents. Practical single and double polarity reversal (i.e., umpolung) of the nitrogen atom is achieved using sterically and electronically tunable ketomalonate-derived imines and oximes. Overall, this novel approach represents an operationally simple, scalable, and environmentally friendly alternative to transition-metal-catalyzed C-N cross-coupling methods that are currently used to access structurally diverse secondary amines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.