Abstract

We report a practical chemical vapor deposition (CVD) route to produce bilayer graphene on a polycrystalline Ni film from liquid benzene (C6H6) source at a temperature as low as 400 °C in a vertical cold-wall reaction chamber. The low activation energy of C6H6 and the low solubility of carbon in Ni at such a low temperature play a key role in enabling the growth of large-area bilayer graphene in a controlled manner by a Ni surface-mediated reaction. All experiments performed using this method are reproducible with growth capabilities up to an 8 in. wafer-scale substrate. Raman spectra analysis, high-resolution transmission electron microscopy, and selective area electron diffraction studies confirm the growth of Bernal-stacked bilayer graphene with good uniformity over large areas. Electrical characterization studies indicate that the bilayer graphene behaves much like a semiconductor with predominant p-type doping. These findings provide important insights into the wafer-scale fabrication of low-temperature CVD bilayer graphene for next-generation nanoelectronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call