Abstract

Powerful simulation/optimization (S/O) models exist for designing groundwater well systems and pumping strategies. However, it can be challenging to use S/O modeling effectively for large, complex, and computationally intensive problems within project time and cost constraints. Here, we present a generic two-stage optimization procedure for making S/O modeling more practical. Application is illustrated for developing optimal transient 30-year pump-and-treat designs for Blaine Naval Ammunition Depot (NAD), Nebraska, and using an innovative hybrid advanced genetic algorithm with tabu search features (AGT). AGT includes standard genetic algorithm and tabu search features plus healing, elitism, threshold acceptance, and a new subset/subspace decomposition optimization. The screening stage simplifies the optimization problem, and selects desirable remediation wells from among many candidates. During this stage, computational effort is lessened by reducing the number of state variables needing evaluation, and the solution space dimensionality (including temporal dimensions). Subset/subspace decomposition optimization of steady flow rates is used to identify desirable sets of candidate wells. The transient optimization stage develops mathematically optimal time-varying pumping rates for well subsets identified by the screening stage. It also includes reoptimization using the original objective function plus goal programming to increase strategy robustness. Initializing the AGT with feasible solutions reduces computational effort. Within a short period the procedure developed optimal pump and treat system designs for NAD. The procedure yields better objective function values than trial and error. Because optimization causes tight constraints, the computed strategy is sensitive to changes in model parameters. Increasing strategy robustness via AGT and goal programming degrades the value of the initial objective function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.