Abstract

Drosophila melanogaster is a popular research model organism thanks to its’ powerful genetic tools that allow spatial and temporal control of gene expression. The inducible GeneSwitch Gal4 system (GS) system is a modified version of the classic UAS/GAL4 system which allows inducible regulation of gene expression and eliminates background effects. It is widely acknowledged that the GS system is leaky, with low level expression of UAS transgenes in absence of the inducer RU-486 (the progesterone analog that activates the modified GAL4 protein). However, in the course of our experiments, we have observed that the extent of this leak depends on the nature of the transgene being expressed. In the absence of RU-486, when strong drivers are used to express protein coding transgenes, leaky expression is low or negligible, however expression of RNA interference (RNAi) transgenes results in complete depletion of protein levels. The majority of published studies, using the GS system and RNAi transgenes validate knock-down efficiency by comparing target gene mRNA levels between induced and non-induced groups. Here, we demonstrate that this approach is lacking and that both additional control groups and further validation is required at the protein level. Unfortunately, this experimental limitation of the GS system eliminates “the background advantage”, but does offer the possibility of performing more complex experiments (e.g. studying depletion and overexpression of different proteins in the same genetic background). The limitations and new possible applications of the GS system are discussed in detail.

Highlights

  • Drosophila melanogaster, popularly known as the fruit fly, is a powerful model organism to study genetic interactions, including those associated with human disease [1]

  • On the other hand using the same drivers to express RNA interference (RNAi) transgenes to knockdown gene expression resulted in a significant decrease in target gene protein levels which was independent of the presence of RU-486

  • The nature of the transgene dictates the extent of non-induced expression when using the Gal4 system (GS) system

Read more

Summary

Introduction

Drosophila melanogaster, popularly known as the fruit fly, is a powerful model organism to study genetic interactions, including those associated with human disease [1]. We observed negligible or minimal expression of protein coding transgenes in the absence of RU-486, using two different promoters: (i) daughterless-Gene-Switch (daGS) and (ii) tubulin-Gene-Switch (tubGS).

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.