Abstract

As a kind of practical protocol, quantum-key-distribution (QKD)-based quantum private queries (QPQs) have drawn lots of attention. However, joint-measurement (JM) attack poses a noticeable threat to the database security in such protocols. That is, by JM attack a malicious user can illegally elicit many more items from the database than the average amount an honest one can obtain. Taking Jacobi et al.'s protocol as an example, by JM attack a malicious user can obtain as many as 500 bits, instead of the expected 2.44 bits, from a ${10}^{4}$-bit database in one query. It is a noticeable security flaw in theory, and would also arise in application with the development of quantum memories. To solve this problem, we propose a QPQ protocol based on a two-way QKD scheme, which behaves much better in resisting JM attack. Concretely, the user Alice cannot get more database items by conducting JM attack on the qubits because she has to send them back to Bob (the database holder) before knowing which of them should be jointly measured. Furthermore, JM attack by both Alice and Bob would be detected with certain probability, which is quite different from previous protocols. Moreover, our protocol retains the good characters of QKD-based QPQs, e.g., it is loss tolerant and robust against quantum memory attack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.