Abstract

The problem of estimating an unknown phase $ \varphi $ using two-level probes in the presence of unital phase-covariant noise and using finite resources is investigated. We introduce a simple model in which the phase-imprinting operation on the probes is realized by a unitary transformation with a randomly sampled generator. We determine the optimal phase sensitivity in a sequential estimation protocol, and derive a general (tight-fitting) lower bound. The sensitivity grows quadratically with the number of applications $ N $ of the phase-imprinting operation, then attains a maximum at some $ N_\text{opt} $, and eventually decays to zero. We provide an estimate of $ N_\text{opt} $ in terms of accessible geometric properties of the noise and illustrate its usefulness as a guideline for optimizing the estimation protocol. The use of passive ancillas and of entangled probes in parallel to improve the phase sensitivity is also considered. We find that multi-probe entanglement may offer no practical advantage over single-probe coherence if the interrogation at the output is restricted to measuring local observables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.