Abstract

The design of robotic mechanisms is a complex process involving geometric, kinematic, dynamic, tolerance, and stress analyses. In the design of a real system, the construction of a physical prototype is often considered. Indeed, a physical prototype helps the designer to identify the fundamental characteristics and the potential pitfalls of the proposed architecture. However, the design and fabrication of a prototype using traditional techniques is rather long, tedious, and costly. In this context, the availability of rapid prototyping machines can be exploited in order to allow designers of robotic mechanisms to build prototypes rapidly and at a low cost. In the article, the rapid prototyping of mechanisms using a commercially available computer-aided design (CAD) package and a fused deposition modeling (FDM) rapid prototyping machine is presented. A database of lower kinematic pairs (joints) is developed using the CAD package, and parameters of fabrication are determined experimentally for each of the joints. These joints are then used in the design of the prototypes where the links are developed and adapted to the particular geometries of the mechanisms to be built. Also, a procedure is developed to build gears and Geneva mechanisms. Examples of mechanisms are then studied and their design is presented. For each mechanism, the joints are described and the design of the links is discussed. Some of the physical prototypes built using the FDM rapid prototyping machine are shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.