Abstract

A practical procedure for retrieving quantitative phase distribution at the interface between a thin amorphous germanium (a-Ge) film and vacuum based on the transport of intensity equation is proposed. First, small regions were selected in transmission electron microscopy (TEM) images with three different focus settings in order to avoid phase modulation due to low frequency noise. Second, the selected TEM image and its three reflected images were combined for mirror-symmetry to meet the boundary requirements. However, in this symmetrization, extra phase modulation arose due to the discontinuous nature of Fresnel fringes at the boundaries among the four parts of the combined image. Third, a corrected phase map was obtained by subtracting a linear fit to the extra phase modulation. The phase shift for a thin a-Ge film was determined to be approximately 0.5rad, indicating that the average inner potential was 18.3V. The validity of the present phase retrieval is discussed using simple simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.