Abstract

There have been a few attempts to develop prediction models of splitting tensile strength and reinforcement-concrete bond strength of FAGC (low-calcium fly ash geopolymer concrete), however, no model can be used as a design equation. Therefore, this paper aimed to provide practical prediction models. Using 115 test results for splitting tensile strength and 147 test results for bond strength from experiments and previous literature, considering the effect of size and shape on strength and structural factors on bond strength, this paper developed and verified updated prediction models and the 90% prediction intervals by regression analysis. The models can be used as design equations and applied for estimating the cracking behaviors and calculating the design anchorage length of reinforced FAGC beams. The strength models of PCC (Portland cement concrete) overestimate the splitting tensile strength and reinforcement-concrete bond strength of FAGC, so PCC’s models are not recommended as the design equations.

Highlights

  • There was a lack of study on other structural behaviors, such as the cracking behaviors and design anchorage length of reinforced fly ash geopolymer concrete (FAGC) beams, which are related to the tensile strength and reinforcement-concrete bond strength [9,10,11]

  • This study has established the databases of splitting tensile strength and bond strength of FAGC, developed and verified the prediction models and the corresponding prediction intervals of splitting tensile strength and bond strength of FAGC, and used the strength models to calculate the design anchorage length and estimate the cracking moment, crack spacing and width of reinforced FAGC beams

  • Compared with the previous strength models of FAGC, the tensile strength model in this study considers the effect of shape and size of tested specimens on strength, and the bond strength model in this study considers the cover to diameter ratio and the diameter to development length ratio

Read more

Summary

Introduction

Current research on structural behaviors of reinforced FAGC members focused on the failure mode and bearing capacity. There was a lack of study on other structural behaviors, such as the cracking behaviors and design anchorage length of reinforced FAGC beams, which are related to the tensile strength and reinforcement-concrete bond strength [9,10,11]. To estimate the cracking behaviors and calculate the design anchorage length, it is vital to accurately estimate the tensile strength and reinforcement-concrete bond strength from the compressive strength using the specific strength models of FAGC rather than the strength models of PCC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.