Abstract

Abstract: Biophysical techniques include various methodologies applied in studying biological systems at the molecular and cellular level for the drug discovery process. Various methods like isothermal calorimetry, electron microscopy, XRD (X-ray diffraction), electron microscopy, mass spectrometry, atomic force microscopy, differential scanning calorimetry, surface plasmon resonance, and nuclear magnetic resonance are important techniques for drug discovery. Out of these techniques, XRD is widely employed in structure-based drug discovery, whereas FBDD (fragment-based drug discovery) is widely used in the different phases of drug discovery. XRD was considered one of the most important tools for structure determination of biomolecules and peptides. Consistent development and advancement in XRD improved the various aspects of data processing, collection, sample loading, and increased throughput. This advancement is crucial in obtaining highly resolved protein and other biomolecule crystal structures. The structure obtained from XRD forms the core of structure-based drug discovery and FBDD. This review article focuses on the different roles of biophysical techniques with special emphasis on advancement, data collection, and XRD's role in different drug discovery phases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call