Abstract

This paper presents an approach using a multi-objective controller to prevent noise and vibration generated by the wiper blade during its wiping operation. Firstly, this paper focuses on the experimental approach to collect noise and vibration data from a car wiper system during its operation and secondly, to develop black box model of the wiper system using nonparametric approach of system identification known as nonlinear auto regressive exogenous Elman neural network (NARXENN). Finally, a novel closed loop iterative input shaping controller whose parameters are tuned simultaneously by a Pareto based multi objective genetic algorithm (MOGA) are proposed and simulated in such a way that it can prevent unwanted noise and vibration in the wiper system. The main contribution of this work rather the previous studies of automobile wiper system is to develop a novel multi-objective control strategy whereby an automobile wiper blade is moved within its sweep workspace in the least amount of time with minimum noise and vibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.