Abstract

In order to break the aging crude oil (WACO) emulsion of the offshore platform more effectively, a highly active isocyanate, polyaryl polymethylene isocyanate (PAPI), was selected to modify the pilot-scale tannic acid demulsifier. In the addition of PAPI, its molecular weight and viscosity dramatically increased, while its relative solubility, hydroxyl number, and cloud point exhibited an opposite direction, showing an increase in hydrophobicity. After adding the above modified demulsifier, a remarkably improved water removal of WACO emulsion accompanied by a notable reduction of the water content in the oil phase monitored by the Karl Fischer method was observed. Demulsification on the offshore platform demonstrated that the best water removal was achieved when the proportion of PAPI is 1.5 wt %. Its demulsification efficiency reached 95.7%, which was 25.6% higher than the 76.2% of unmodified demulsifier. In addition, a positive correlation between viscoelasticity of emulsion and demulsification performance was found by only adjusting the parameters of the rheometer. This method may be utilized to characterize the demulsification performance by any rotary rheometer. The pilot-scale demulsification experiment demonstrated that the water removal can reach 98.14 vol % and residual water content was only 0.55 vol %. These results further confirmed the excellent demulsification performance of the modified demulsifier toward the WACO emulsion in production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.