Abstract

We propose an extremely simple approximation scheme for computing shortest paths on the surface of a convex polytope in three dimensions. Given a convex polytope P with n vertices and two points p, q on its surface, let dP(p, q) denote the shortest path distance between p and q on the surface of P. Our algorithm produces a path of length at most 2dP(p, q) in time O(n). Extending this result, we can also compute an approximation of the shortest path tree rooted at an arbitrary point x ∈ P in time O(n log n). In the approximate tree, the distance between a vertex v ∈ P and x is at most cdP(x, v), where c = 2.38(1 + e) for any fixed e > 0. The best algorithms for computing an exact shortest path on a convex polytope take Ω(n2) time in the worst case; in addition, they are too complicated to be suitable in practice. We can also get a weak approximation result in the general case of k disjoint convex polyhedra: in O(n) time our algorithm gives a path of length at most 2k times the optimal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.