Abstract
In this study, a practical maneuvering simulation method is presented considering the roll-coupling effect by extending an ordinal simulation model (3D-MMG model) proposed by Yasukawa and Yoshimura (J Mar Sci Technol 20:37–52, 2015), and adding the motion equation of roll. The roll moment acting on the hull is estimated by multiplying the hull lateral force with the vertical acting point. With respect to the surge force, lateral force, and yaw moment, the derivative expression model is employed. Subsequently, hydrodynamic derivatives with the exception of the roll-related terms are obtained by a captive model test based on the 3D-MMG model. The roll-related derivatives and the vertical acting point of the hull lateral force are estimated by simple formulae constructed based on the experimental data of four ship models. To validate the proposed simulation method, turning simulations are conducted for a pure car carrier model with variations in the metacentric height $${\overline{\mathrm{GM}}}$$ and are compared with free-running model test results. The simulation method exhibits sufficient accuracy with respect to its practical use and is useful to conventionally predict turning motions by considering the roll-coupling effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.