Abstract
Accurately quantifying extreme rainfall is important for the design of hydraulic structures, for flood mapping and zoning and for disaster management. In order to produce maps of estimates of 25-year rainfall return levels in Brazil, we selected 893 shorter and 104 longer rainfall time series from the Agência Nacional de Águas (ANA), and applied the framework of extreme value theory. Care was needed to reduce the impact of poor data. Estimates of the shape parameter of the extreme-value model fitted to rainfall data are typically biased, so we discuss an empirical correction that takes into account not only the sample-size bias, but also a so-called penultimate approximation that we use to inform a Bayesian spatial latent variable model for the annual rainfall maxima. This model accounts for subtle patterns of spatial variation in the data and provides plausible return level estimates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.