Abstract

We explore several practical experimental issues in measuring ultrashort laser pulses using the technique of frequency-resolved optical gating (FROG). We present a simple method for checking the consistency of experimentally measured FROG data with the independently measured spectrum and autocorrelation of the pulse. This method is a powerful way of discovering systematic errors in FROG experiments. We show how to determine the optimum sampling rate for FROG and show that this satisfies the Nyquist criterion for the laser pulse. We explore the low- and high-power limits to FROG and determine that femtojoule operation should be possible, while the effects of self-phase modulation limit the highest signal efficiency in FROG to 1%. We also show quantitatively that the temporal blurring due to a finite-thickness medium in single-shot geometries does not strongly limit the FROG technique. We explore the limiting time-bandwidth values that can be represented on a FROG trace of a given size. Finally, we report on a new measure of the FROG error that improves convergence in the presence of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.