Abstract
Iron-catalyzed reactions are receiving a surge of interest owing to the natural abundance and biocompatibility of Fe and the urge to develop practically useful sustainable catalysis for fine chemical industries. This article is a brief account of our studies on the C–O and C–N bond formation reactions catalyzed by Fe complexes supported by oligopyridine, macrocyclic tetraaza, and fluorinated porphyrin ligands. The working principle is the in situ generation of reactive Fe=O and Fe=NR intermediates supported by these oxidatively robust N-donor ligands for oxygen atom/nitrogen group transfer and insertion reactions. The catalytic reactions include C–H bond oxidation of saturated hydrocarbons (up to 87 % yield), epoxidation of alkenes (up to 96 % yield), cis-dihydroxylation of alkenes (up to 99 % yield), epoxidation–isomerization (E–I) reaction of aryl alkenes (up to 94 % yield), amination of C–H bonds (up to 95 % yield), aziridination of alkenes (up to 95 % yield), sulfimidation of sulfides (up to 96 % yield), and amide formation from aldehydes (up to 89 % yield). Many of these catalytic reactions feature high regio- and diastereoselectivity and/or high product yields and substrate conversions, and recyclability of the catalyst, demonstrating the applicability of Fe-catalyzed oxidative organic transformation reactions in practical organic synthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.