Abstract

Genetic models convert data into estimated breeding values and other information useful to breeders. The goal is to provide accurate and timely predictions of the future performance for each animal (or embryo). Modeling involves defining traits, editing raw data, removing environmental effects, including genetic by environmental interactions and correlations among traits, and accounting for nonadditive inheritance or nonnormal distributions. Data include phenotypes and pedigrees during the last century and genotypes within the last decade. The genomic data can include single nucleotide polymorphisms, quantitative trait loci, insertions, deletions, and haplotypes. Subsets must be selected to reduce computation because total numbers of variants that can be imputed have increased rapidly from thousands to millions. Current computation using 60,671 markers takes just a few days. Nonlinear models can account for the nonnormal distribution of genomic effects, but reliability is usually better than that of linear models only for traits influenced by major genes. Numbers of genotyped animals have also increased rapidly in the joint North American database from a few thousand in 2009 to over 1 million in 2015. Most are young females and will contribute to estimating allele effects in the future, but only about 150,000 have phenotypes so far. Genomic preselection can bias traditional animal models because Mendelian sampling of phenotyped progeny and mates is no longer expected to average zero; however, estimates of bias are small in current US data. Single-step models that combine pedigree and genomic relationships can account for preselection, but approximations are required for affordable computation. Traditional animal models may include all breeds and crossbreds, but most genomic evaluations are still computed within breed. Models that include inbreeding, heterosis, dominance, and interactions can improve predictions for individual matings. Multitrait genomic models may be preferred for traits with many missing records or when foreign records are included as pseudo-observations, but most countries use multitrait traditional evaluations followed by single-trait genomic evaluations. Genomic reliabilities are about 70% for the more heritable traits. Researchers must choose from many available models and explain how the models work so that breeders can more confidently apply the predictions in their selection programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.