Abstract
Fractional flow formulations of the multi-phase flow equations exhibit several attractive attributes for numerical simulations. The governing equations are a saturation equation having an advection diffusion form, for which characteristic methods are suited, and a global pressure equation whose form is elliptic. The fractional flow approach to the governing equations is compared with other approaches and the implication of equation form for numerical methods discussed. The fractional flow equations are solved with a modified method of characteristics for the saturation equation and a finite element method for the pressure equation. An iterative algorithm for determination of the general boundary conditions is implemented. Comparisons are made with a numerical method based on the two-pressure formulation of the governing equations. While the fractional flow approach is attractive for model problems, the performance of numerical methods based on these equations is relatively poor when the method is applied to general boundary conditions. We expect similar difficulties with the fractional flow approach for more general problems involving heterogenous material properties and multiple spatial dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.