Abstract
Stochastic simulation of biochemical reaction networks are widely focused by life scientists to represent stochastic behaviors in cellular processes. Stochastic algorithm has loop-and thread-level parallelism, and it is suitable for running on application specific hardware to achieve high performance with low cost. We have implemented and evaluated the FPGA-based stochastic simulator according to theoretical research of the algorithm. This paper introduces an improved architecture for accelerating a stochastic simulation algorithm called the Next Reaction Method. This new architecture has scalability to various size of FPGA. As the result with a middle-range FPGA, 5.38 times higher throughput was obtained compared to software running on a Core 2 Quad Q6600 2.40 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.